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DETERMINATION OF EJECTION EXTRACTION WITH THE
EXPLOSION OF AN UNDERGROUND FUSE-TYPE CHARGE
IN A TWO-LAYER MEDIUM

N. B. Il'inskii and A. V. Potashev UDC 624.131+539.215

In [1], in a pulsed-hydrodynamic statement, an investigation was made of the problem of determining the
ejection extraction with the explosion of a fuse-type discharge in a two-layer medium. This problem is solved
below with more general assumptions.

Let the ground consist of two layers of identical density, differing in the values of the critical velocity.
The upper layer with a thickness H is characterized by the critical velocity v;, while the lower layer, of un-
bounded thickness, has the critical velocity v,. At a depth h from the surface of the ground, there is a fuse-
type charge, modeled in the vertical plane by a source with a power of 2q. It is required to determine the
limit of the ejection extraction, taking account of its lines of flow, and taking v = v, behind it in the upper layer
and v = v, in the lower layer, where v is the value of the velocity. We note that, in distinction from a solid—
liquid model of an explosion (see, for example, [2, 3]), in the present work, as in [1], the condition v > v (v,
is the critical velocity) is not imposed in the region of the motion. Only such ejection schemes are considered
in which the point of branching of the boundary of the ejection extraction lies below the line of separation of the
layers. Depending on the ratio of the critical velocities vy and v,, two variants are studied.

Variant 1. Let v; < v,, The corresponding scheme of the ejection extraction is illustrated in Fig. 1 (by
virtue of the symmetry with respect to the y axis, only the right-hand half of the ejection extraction is shown;
this region is denoted by G, and its boundary’' ABMNRCDA, by I'y). We note that the condition |y, | = H; (v, is
the value of y at the point B) is clearly satisfied if h = H. The starting parameters of the problem are q, h, H,
vy, and v,.

We introduce dimensionless variables by the relationships
2% = z/H, w¥ = w/q, v* = Z/'H."’q, (1)
where z = x + iy is the physical plane; w(z) = ¢ + iy is the complex flow potential. The solution will then depend
only on three parameters:
h* =Rh/H, vi=uv.Hig, vs—ruv.Hg,
since H*= 1, g* = 1. In what follows, for simplicity, we shall omit the superscript asterisk for the dimension-
less variables.

The problem described reduces to the following boundary-value problem: Determine the unknown sections
of the boundary I', of the region Gy in such a way that the function w(z) = ¢, y) + i &, y), analytical in Gz and
continuous in (—}Z (except for the point A), will satisfy the following conditions at I';:
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0@/63 = U3 at HC, (3([:03 = Uy at BJ‘["V, (3)

where s is the arc abscissa of a point of the boundary I';. At the point A, the function w(z) must have a loga-
rithmic singularity.

In the plane w, taking account of the condition (2), the solution will correspond to the semiaxis Gy (Fig.
2a); here the parameter ¢, (the value of ¢ at the point B) is not determined. We introduce the function

x—z]n(—i—d—w)—-e-}—zS )

where 4 is the angle of inclination of the velocity vector to the x axis; S = In (v/vy). In the plane y, taking ac-
count of condition (3), the solution will correspond to the region Gy (Fig. 2b); the corresponding points in the
different planes are designated by the same letters. The parameters S, (the value of S at the point D) and 8
{the value of g at the point M) are not determined; 8; = In (v,/vy).

We note that, by the postulation of the existence of a point of inflection at the boundary of the ejection,
BN is permissible in the region G, near the section MN with v < v,. In fact, the presence of a point of inflec~
tion M leads to the appearance of a section MN of the boundary I', (we designate it by v,), concave inside the
region, i.e., such that 89/9s = 0. Then, examining the function In (dw/dz)(z) = Inv — ig, analytical near Vg iD
accordance with the Cauchy —Riemann conditions, 81Inv/an=—8(6)/8s (n is the internal normal to y,) we
obtain 8v/3n < 0. Consequently, in Gy there is a region adjacent to vy, in which v < v5. What has been said
can be seen from Fig. 2b: At any given point near the section MN of the region Gy we have S < 0, i.e., v< vy

Taking the half-plane Im¢ > 0 (¢ = £ + in) as a canonical region, we map it conformally on the region Gy,
by the function

w=i<-;— +-;—arcsin§}; (5)
here the points A, B, M, N, R, C, and D correspond to the points +«~, b, m, n, r — 1, 1 of the £ axis; where

—o <p<m=n<r=—1. We then map this half-plane on the region Gy by the Christoffel —Schwarz integral

Y

=i (v —m)dr . 6)
x l-gll(f—b)(r—-n)(r-—r)(ﬂ-u 2 (

We note that the coefficient ahead of the integral is equal to i, as a conseguence of the fact that, at the point
¢ = «, Rey(¢) undergoes a discontinuity, equal to .

Differentiating the function (5), and using relationships (4) and 6), we find

z
_iS‘ f (t—m)dy dg )
== ) Ve—b—nE—Da~+D | VI

The expression obtained for z(¢) contains four parameters (m, n, r, b}; to seek them, we have the system
of nonlinear equations

Re y(n) = 0, Im y(r) = Sy; (8
Imz(r) = — 1, Imz(o0) = — h. 9

The values of 6; and S, are determined from the relationships
eo = Re X(m)’ SO = Im X(l)' (10)
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A partial case of the variant under consideration is the case where v, = 0. Here, in the plane ¢ we will
have r = —1,

Taking into consideration that the function Rey{z) undergoes a discontinuity equal to /2 at the point
¢ =—1 and that, at the same point, the function Im z(t) also undergoes a discontinuity, equal to 1, correspond-
ingly we have

. A TR T VoI —VZ=T—ny /2040 (15
m"‘1+2] (1Tb)(1+n)1 vg—]/—1—-b+]’—1—n n—ba : (11)

Adding the condition Im z () = —h to relationships (11), we will have a system of equations for determining the
parameters m, n, and b.

Variant 2. Let vy > v,. The scheme of the ejection extraction anid the region corresponding to it in the
plane x are shown in Fig. 3a, b. In this case, the region in the plane w has the same form as in the first
variant (see Fig. 2a). Mapping of the half-plane Im ¢ > 0 (in the given case ~= <b=n<r < m = —1) on the
regions Gy and GX is effected, respectively, by the functions (5) and (6), and, on the region G;, by the func-
tion (7). For seeking the parameters n, r, m, and b we have the system of equations

BRe y(n) = =, Im y{r) = Sy (12)
Imz(r) = — 1, Im z(00) = — &. (13)
The values of 8, and S, are determined from the felationships (10).
A partial case of this variant, investigated in [1], is the case where v; = 0. -In the plane ¢, we have n = b,
Mapping of the half-plane Im ¢ > 0 on the region G5 is effected in this case by the function
(¢ | ( d dg
Py o ["‘ 55 o 1;(r—r)]V'(4i;2)‘

1 —1

Taking into consideration that, at the point ¢ = b, Rex(t), where x = iln[(1/ vy (@w/dz)], undergoes a
discontinuity equal to 37/2, we have

m =@V —nb+1 +b (14)
Adding to the relationship (14) the conditions

Im z(r) = — 1, Im z{c0) = — &,
we obtain a system of equations for determining the parameters b, r, and m.

Numerical Calculations. The numerical results were obtained using a semiinverse method, the essence
of which consists in the following, Assigning the values of ¢, (and, consequently, b), S;, and 6y, from Egs.
(8) [for the second variant, correspondingly, (12)] and the first of relationships (10), the values of m,

n, and r were sought, Then, from the first of Eqs. (9) lcorrespondingly, (13)], the value of v; was
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TABLE 1

Example No,| . )

from Fig.5 : * ’ s
?y 0,16 0,16 0,034 | 0,63 0,63 0,41
vy 0,42 0,42 0,079 0,25 0,25 0,16
h 0.91 1,76 0,91 0,81 1,53 1,53
i 0,107 0,047 0,038 | 0,0057 | 0,0057 | 0,0057
TABLE 2

ExampleNo.

from Fig.6 7 8 8 10 t 12
vy 0 0 0 0,75 0,28 0,78
ER 1,24 1,24 0,81 0 0 i}

h 1i 1,14 1 i i 0,65

determined (and, consequently, from the known value of S;, the value of v,), and from the second equa-
tion, the value of h. Substituting the values obtained into (7), the unknown sections of the boundary I', were
sought.

Since, in a semiinverse statement, the dimensions of the region Gy are completely unknown, as one of
the simplest methods for seeking the parameters m, n, and r, the EHDA method was used {4]. However, the
values of the parameters found using this method have a certain error; therefore, their values were refined
in the following manner. Eliminating the value of m from Egs. (8} [correspondingly, (12}], and assuming that
the parameter n is determined exactly by the EHDA method, the value of r was sought, Then, from the first
of Egs. (8) [correspondingly, (12)], the value of m was determined, after which the value of g; was refined
using the first of relationships (10).

In constructing the region G, if was assumed that the following condition holds:

X
Im z(b) << — 1. {15)

If this condition is not satisfied, there is a change in the form of the ejection excavation and, correspondingly,
of the region in the plane y (for the first variant, the form of the above regions is shown in Fig. 4). Therefore,
with a solution of the problem in a semiinverse statement, after obtaining the values of the parameters, the
satisfaction of condition (15) must be assured.

The above method was used on an M~222 computer to make a series of calculations., The program was
set up in the input language of the TA-1M translator. The most interesting results obtained for the cases S, =
~37/10 and 8, = 37/ 10 are given in Fig. 5z, b,

Examples 1 and 3, 5 and 6 show ejection extractions formed with the explosion of identically arranged
charges of different powers. Examples 1 and 2, 4 and 5 correspond to different depths of charges of identical
power. The corresponding values of vy, v;, h, and the length ! of the section RN of the boundary 'y, for the
above six examples are given in Table 1.

Figure 6a, b gives the results of calculations of six examples for the partial cases v; = 0and, correspond-
ingly, vy = 6. The values of v{, v,, and h are shown in Table 2. As above, examples 7 and 9, 10 and 11 corre-
spond to identically arranged charges of different powers, and examples 7 and 8, 10 2and 12 correspond to depths
of charges of identical power.

From the results given, the following conclusions can be drawn.

1. For the case v < vy, the sector is easily followed at the line of separation between the media; with
vy > vy, this sector is less clearly marked.

2. With a decrease in the strength of the soil, with an identical arrangement of the charge, which, in
dimensional variables [taking account of (3)], corresponds to an increase in the power of the charge with ex-
actly the same soil, the dimensions of the ejection excavations increase, both in width and in depth. It must
be noted that, in this case, the increase in the width of the excavation takes place at the expense of the lower
layer.

3. For identical values of the critical velocities, the dimensions of the ejection extraction increase with
an increase in the depth of the charge. Here the increase in the half-width takes place only up to a certain limit.
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For the case of a homogeneous soil, characterized by the critical velocity v;, as follows from the results of
[3], this limit as h — is equal to 2q/ v; (the values of h, ¢, and v, are dimensional).
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PROPAGATION OF A TWO-DIMENSIONAL PLASTIC WAVE
IN A MEDIUM WITH NONLINEAR UNLOADING

N. Mamadaliev and V. P, Molev UDC 539.374:534.1

The plane stationary problem about the effect of a moving load on a nonlinearly compressed half-plane is
considered.

The case of linear loading and unloading of the medium has been examined in [1, 2]. The solution of the
problem obtained in [1] by conformal mapping holds in the case when the propagation velocity dl of the unload-
ing strains exceeds the velocity of loading motion. This problem is solved in [2] without constraints on the
velocity @, by the Mellin integral transform method for the triangular load case.

The influence of nonlinear properties of the half-plane material on the propagation of shock-wave pro-
cesses therein is studied by the numerical method of characteristics and analytically in this paper.

The computational scheme proposed can be used to determine the parameters of an inhomogeneous me-
dium for different profiles of a given load.

Let a decreasing normal load move monotonically at a constant velocity D exceeding the propagation
velocity of the loading —unloading strains of the medium over the surface of a half-plane. The load profile does
not change as the wave propagates. The medjum filling the half-plane possesses such mechanical properties
that the relation between the pressure p and the volume strain ¢ is nonlinear and irreversible during loading
and unloading, where dp/de > 0, d%p/de? > 0 and the slope of the unloading branch of the p ~ ¢ diagram exceeds

the slope of the loading branch.

In this case, a shock with the curvilinear surface 3 will be propagated in the half-plane, and the pertur-
bation domain will be bounded by the front = and the boundaries of the half-plane. It is assumed that the medi-
um is loaded instantaneously at the front £, while unloading occurs in the perturbed domain behind the front.

The relationships
g ~= p* (@ —wn), peaVn = D¥, ve =0 (¢ = Dsina) (1)

hold on the surface of strong discontinuity ¥ from the mass and momentum conservation conditions. We repre-
sent the equation of state of the medium in the form of a polynomial:

p¥* = o 8% -+ o,e¥l,

We have
ou 1 9p ov 1 dp
D6§+—p—6§_0’ D+ 0, @)
8 @ dr -
D'agp(?“‘oﬁ)“o p=p* 4 Bule — %) - Pyle —e¥)?
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